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METHOD OF QUASI-GREEN'S FUNCTIONS FOR A NONSTATIONARY RONLINEAR
PROBLEM OF THERMAL RADIATION

M. D. Martynenko, M. A. Zhuravkov, UDC 517.947.43
and E. A, Gusak

We derive a system of two nonlinear integral equations for the determination of a
temperature field and the intensity of the incident radiation. The kernels of
these equations are expressed in terms of a quasi-Green's function.

One of the methods for increasing the accuracy of thermal calculations consists in con-
verting a boundary value problem of heat conduction to an equivalent integral equation [1].
Various methods can be used for this purpose (see, for example, [2, 4]). In what follows,
this conversion is effected with the aid of the method of quasi-Green's functions [5]. The
main advantages of this method are: the explicit form of the kernels of the integrand ex-—
pressions; the incorporation of information relating to the geometry of the domain of inte-
gration directly into the kernels using the apparatus of the theory of R-functions [6].

With an appropriate choice of structure for the normalized equation of the domain of inte-
gration [6], we obtain Fredholm integral equations of the second kind.

We consider a nonlinear initial-boundary problem for a heat radiating body in which the
thermophysical characteristics and heat sources are temperature-independent and in which heat
exchange with an external medium is present on a convex surface S (see [7]):

div (A gradu) —cou; = — W, PED, t>0, (1)
u(P, 0)=y(P), PeD, (2)
kg—’;—i-au:(p(P, t, u), PES, t>0. (3)

Here A = ¢(p, t) is the thermal conductivity coefficient; c is the specific heat coefficient;
p is the density of the medium; W is the volumetric heat source or heat sink density,

O(P, t, u)=—qy(P, )+ @, (P, t, u),

where ¢o(P, t) = qgoyurce(P, t) + qup (P, t) + eouﬁ(P, t) is the total heat flow supplied to
Sy @.(P, t, u) gou” is the flow radiated in accordance with the Stefan—Boltzmann law. Here
up, in turn, is the temperature of the external mediumj; o is the Stefan—Boltzmann constant;
€ = €(u) is the degree of blackness of surface S.

If surface S contains a concave portion S; or if there is an exchange of radiative flows
with other surfaces, then in the boundary conditions (3) an additional term ¢ x E appears
in the function ¢,(P, t, u) which accounts for radiation of heat on the concave surface S;,
and we then use the integral equations of radiant heat exchange
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E(P, ) =E f)+ TK(P, Q{rEQ #)+eF[u(Q, ]} dS, PcS. (4)

source \ ’

Here E(P, t) is the integral hemispherical intensity of the incident radiation; Egoyrce(®s
t) is the external heat source intensity; r = l-¢ is the coefficient of reflection; K(P, Q)
is a continuous, positive-definite, symmetric kernel:

cos (P —Q, np)cos(Q — P, ny)

K(P’ Q): J'E(P—Q)Z s

P — Q is the vector joining points P and Q; np and npy are exterior normals to S; at points
P and Q. Using Green's second formula for the operator Lu = div(igradu)—couy [7], we have

o -0 {. Ov
S' ;[vLu—qu] dDdt = ¢p [ uv’o dD + j/ <ﬁ[ (?» ——|— ocu) —u Lk ~a7+ ow” dSdt, (5)
D S L !

D

where Mv = div(} grad v) + cpvg.

Substituting for v in Eq. (5) the fundamental solution of the thermal conductivity
equation, namely,

. N 1 _ cpr%Q
P T =y exp[ 4<t—r)]_’

and making use of the follow1ng properties of the function r*(P, Q, t - 1) and the Dirac
delta function,

Mr* = —8P—Q)6(f—r1), P, QeD, t, 10, (6)
; .
flre — Q8¢ —T)dDdv = [ (P, 1), M
we obtain °P
'H—O v or P
u(P, 1)y= — jLur*dth —cp rur*‘HOdD - j‘ (j){r (7»——|~ocu) —u ( 4 )J dSdt. (8)
0 5 \ n
Adding Egs. (8) and (5), we have
i T+0
u(P; )= — X V[Lu(ﬁ*——v)%—uﬂkﬂdDdt4a
‘ 6 D
(9
i ou . o(r*—v) . . TR0
+ 55 ;ﬁ[(h?n--l— au)(r*—~v)—— u (k—an— +oal(r —-v))} dSdt ——cpiu(r‘ — 0) . dD.

We construct the function v(P, Q) in the following form [5]:
v=o0(P, Q, i—1)=

3 —
o o =2 ;[m—ai)%‘; & — 2 _gg_] +

! —oplr? + do(xo®])  (10)
| v | = ).

R _ :
where t = |/ B (h—EP: P=Pln 5 %) Q= QM B &) 0P, Q —0(P)A%0(Q; M is a synbol
=1

of R-conjunction, for example, A* = Aq[6]; w(x) is the normalized equation of the boundary
of the domain of integration [5].
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It is readily seen that with this choice for the function v, the corresponding function

GP, Q t—1)=r*(P, Q t—1)—0v(P, Q, I—1) (11)

satisfies the boundary condition
oG
h— 1L aG=0. {12)
on

Taking relations (1), (2), (3), and (12) into account, we see that Eq. (9) assumes the form

T+0
u(P, ©y=U(P, 1)— 5 S'u(Q)MvdDdt—cp {u(Q, 7)G(P, Q, 0)dD, (13)
‘ 6§ D D
where
T+0 40 R
U(P, ©)= f gvm(P, Q t—m)dDdi + | $G(P, Q t—1) w(P, £, u)dSdt+cp [ $(QG(P, Q, —7)dD.
) 0§ b

Thus we have obtained a solving system of integral equatioms (13), also subject to the
requirement (4), for the determination of the temperature field u(P, t).

The function w(x) is constructed in a form which guarantees continuity of the kernel
Mv of integral equation (13). Integral equations analogous to Eq. (13) can also be con-
structed for other boundary conditions.

NOTATION

u(P, t), temperature field of thermally radiating body; D, a finite region of three-
dimensional space with convex boundary S; t, time; n, inner normal to boundary §; r =

3
‘b/[:S(xi—~§g2, length of vector joining points P(xi, X2, Xs) and Q(£., &2, £3): Si1, concave

i=1
portion of surface S.
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